我们引入了一个新的隐式形状表示,称为基于射线的隐式函数(PRIF)。与基于处理空间位置的签名距离函数(SDF)的大多数现有方法相反,我们的表示形式在定向射线上运行。具体而言,PRIF的配制是直接产生给定输入射线的表面命中点,而无需昂贵的球体跟踪操作,因此可以有效地提取形状提取和可区分的渲染。我们证明,经过编码PRIF的神经网络在各种任务中取得了成功,包括单个形状表示,类别形状的生成,从稀疏或嘈杂的观察到形状完成,相机姿势估计的逆渲染以及带有颜色的神经渲染。
translated by 谷歌翻译
Change detection (CD) is to decouple object changes (i.e., object missing or appearing) from background changes (i.e., environment variations) like light and season variations in two images captured in the same scene over a long time span, presenting critical applications in disaster management, urban development, etc. In particular, the endless patterns of background changes require detectors to have a high generalization against unseen environment variations, making this task significantly challenging. Recent deep learning-based methods develop novel network architectures or optimization strategies with paired-training examples, which do not handle the generalization issue explicitly and require huge manual pixel-level annotation efforts. In this work, for the first attempt in the CD community, we study the generalization issue of CD from the perspective of data augmentation and develop a novel weakly supervised training algorithm that only needs image-level labels. Different from general augmentation techniques for classification, we propose the background-mixed augmentation that is specifically designed for change detection by augmenting examples under the guidance of a set of background-changing images and letting deep CD models see diverse environment variations. Moreover, we propose the augmented & real data consistency loss that encourages the generalization increase significantly. Our method as a general framework can enhance a wide range of existing deep learning-based detectors. We conduct extensive experiments in two public datasets and enhance four state-of-the-art methods, demonstrating the advantages of our method. We release the code at https://github.com/tsingqguo/bgmix.
translated by 谷歌翻译
近年来,在应用预训练的语言模型(例如Bert)上,取得了巨大进展,以获取信息检索(IR)任务。在网页中通常使用的超链接已被利用用于设计预训练目标。例如,超链接的锚文本已用于模拟查询,从而构建了巨大的查询文档对以进行预训练。但是,作为跨越两个网页的桥梁,尚未完全探索超链接的潜力。在这项工作中,我们专注于建模通过超链接连接的两个文档之间的关系,并为临时检索设计一个新的预训练目标。具体而言,我们将文档之间的关系分为四组:无链接,单向链接,对称链接和最相关的对称链接。通过比较从相邻组采样的两个文档,该模型可以逐渐提高其捕获匹配信号的能力。我们提出了一个渐进的超链接预测({php})框架,以探索预训练中超链接的利用。对两个大规模临时检索数据集和六个提问数据集的实验结果证明了其优于现有的预训练方法。
translated by 谷歌翻译
AD相关建模在包括Microsoft Bing在内的在线广告系统中起着至关重要的作用。为了利用强大的变压器在这种低延迟设置中,许多现有方法脱机执行广告端计算。虽然有效,但这些方法无法提供冷启动广告,从而导致对此类广告的相关性预测不佳。这项工作旨在通过结构化修剪设计一种新的低延迟BERT,以在CPU平台上授权实时在线推断对Cold Start Ads相关性。我们的挑战是,以前的方法通常将变压器的所有层都缩减为高,均匀的稀疏性,从而产生无法以可接受的精度实现令人满意的推理速度的模型。在本文中,我们提出了SwiftPruner - 一个有效的框架,利用基于进化的搜索自动在所需的延迟约束下自动找到表现最佳的稀疏BERT模型。与进行随机突变的现有进化算法不同,我们提出了一个具有潜伏意见的多目标奖励的增强突变器,以进行更好的突变,以有效地搜索层稀疏模型的大空间。广泛的实验表明,与均匀的稀疏基线和最先进的搜索方法相比,我们的方法始终达到更高的ROC AUC和更低的潜伏度。值得注意的是,根据我们在1900年的延迟需求,SwiftPruner的AUC比Bert-Mini在大型现实世界数据集中的最先进的稀疏基线高0.86%。在线A/B测试表明,我们的模型还达到了有缺陷的冷启动广告的比例,并获得了令人满意的实时服务延迟。
translated by 谷歌翻译
广义文本表示是许多自然语言理解任务的基础。要充分利用不同的语料库,不可避免地需要了解它们之间的相关性。但是,许多方法忽略了相关性,并直接用于所有任务的单通道模型(粗糙的范式),这缺乏足够的理性和解释。此外,一些现有的作品通过针迹技能块(一个精细的范式)学习下游任务,这可能会导致其冗余和噪音,从而导致非理性。在这项工作中,我们首先通过三种不同的观点分析任务相关性,即数据属性,手动设计和基于模型的相关性,基于相似的任务被分组在一起。然后,我们提出了一个用粗到细范式的层次结构框架,其最底层共享了所有任务,中层级别分为不同的组,以及分配给每个任务的顶级级别。这使我们的模型可以从所有任务中学习基本的语言属性,提高相关任务的性能,并减少不相关任务的负面影响。我们在五个自然语言理解任务的13个基准数据集上进行的实验证明了我们方法的优势。
translated by 谷歌翻译
Change detection (CD) aims to detect change regions within an image pair captured at different times, playing a significant role in diverse real-world applications. Nevertheless, most of the existing works focus on designing advanced network architectures to map the feature difference to the final change map while ignoring the influence of the quality of the feature difference. In this paper, we study the CD from a different perspective, i.e., how to optimize the feature difference to highlight changes and suppress unchanged regions, and propose a novel module denoted as iterative difference-enhanced transformers (IDET). IDET contains three transformers: two transformers for extracting the long-range information of the two images and one transformer for enhancing the feature difference. In contrast to the previous transformers, the third transformer takes the outputs of the first two transformers to guide the enhancement of the feature difference iteratively. To achieve more effective refinement, we further propose the multi-scale IDET-based change detection that uses multi-scale representations of the images for multiple feature difference refinements and proposes a coarse-to-fine fusion strategy to combine all refinements. Our final CD method outperforms seven state-of-the-art methods on six large-scale datasets under diverse application scenarios, which demonstrates the importance of feature difference enhancements and the effectiveness of IDET.
translated by 谷歌翻译
众所周知,深度学习方法是渴望数据的,它需要大量标记的样本。不幸的是,大量的交互式样品标记工作极大地阻碍了深度学习方法的应用,尤其是对于需要异质样本的3D建模任务。为了减轻对FA \ c {C} ADS的3D建模的数据注释的工作,本文提出了一种半监督的对抗识别策略,该策略嵌入了逆程序建模中。从纹理LOD-2(详细级别)模型开始,我们使用经典的卷积神经网络来识别来自图像补丁的类型并估算Windows的参数。然后将窗口类型和参数组装到程序语法中。一个简单的程序引擎是在现有的3D建模软件中构建的,产生了细粒的窗户几何形状。为了从一些标记的样品中获得有用的模型,我们利用生成对抗网络以半监督的方式训练特征提取器。对抗训练策略还可以利用未标记的数据,使训练阶段更加稳定。使用公开可用的FA \ c {C} ADE图像数据集的实验表明,在同一网络结构下,提出的培训策略可以提高分类精度的提高约10%,参数估计提高了50%。此外,在针对具有不同fa \ c {c} ADE样式的不同数据测试时,性能提高更为明显。
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译
High-utility sequential pattern mining (HUSPM) has emerged as an important topic due to its wide application and considerable popularity. However, due to the combinatorial explosion of the search space when the HUSPM problem encounters a low utility threshold or large-scale data, it may be time-consuming and memory-costly to address the HUSPM problem. Several algorithms have been proposed for addressing this problem, but they still cost a lot in terms of running time and memory usage. In this paper, to further solve this problem efficiently, we design a compact structure called sequence projection (seqPro) and propose an efficient algorithm, namely discovering high-utility sequential patterns with the seqPro structure (HUSP-SP). HUSP-SP utilizes the compact seq-array to store the necessary information in a sequence database. The seqPro structure is designed to efficiently calculate candidate patterns' utilities and upper bound values. Furthermore, a new upper bound on utility, namely tighter reduced sequence utility (TRSU) and two pruning strategies in search space, are utilized to improve the mining performance of HUSP-SP. Experimental results on both synthetic and real-life datasets show that HUSP-SP can significantly outperform the state-of-the-art algorithms in terms of running time, memory usage, search space pruning efficiency, and scalability.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
translated by 谷歌翻译